博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop_14_MapReduce框架结构及其运行流程
阅读量:7031 次
发布时间:2019-06-28

本文共 938 字,大约阅读时间需要 3 分钟。

1.MapReduce原理篇

  Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架;

  Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行

在一个hadoop集群上

2.MapReduce程序结构: 

  一个完整的mapreduce程序在分布式运行时有三类实例进程:

  1、MRAppMaster:负责整个程序的过程调度及状态协调

  2、MapTask:负责map阶段的整个数据处理流程

  3、ReduceTask:负责reduce阶段的整个数据处理流程

3.MapReduce程序运行流程:

  1、 一个mr程序启动的时候,最先启动的是MRAppMaster,MRAppMaster启动后根据本次job的描述信息,计算出

需要的maptask实例数量,然后向集群申请机器启动相应数量的maptask进程

  2、 maptask进程启动之后,根据给定的数据切片范围进行数据处理,主体流程为:

    a) 利用客户指定的inputformat来获取RecordReader读取数据,形成输入KV对

    b) 将输入KV对传递给客户定义的map()方法,做逻辑运算,并将map()方法输出的KV对收集到缓存

    c) 将缓存中的KV对按照K分区排序后不断溢写到磁盘文件

  3、 MRAppMaster监控到所有maptask进程任务完成之后,会根据客户指定的参数启动相应数量的reducetask进程,

并告知reducetask进程要处理的数据范围(数据分区)

  4、 Reducetask进程启动之后,根据MRAppMaster告知的待处理数据所在位置,从若干台maptask运行所在机器上

获取到若干个maptask输出结果文件,并在本地进行重新归并排序,然后按照相同key的KV为一个组,调用客户定义的

reduce()方法进行逻辑运算,并收集运算输出的结果KV,然后调用客户指定的outputformat将结果数据输出到外部存

 

转载于:https://www.cnblogs.com/yaboya/p/9202009.html

你可能感兴趣的文章
二层设备与三层设备的区别--总结
查看>>
安装pytorch成功但cuda不可用
查看>>
unity__DrawCall的理解
查看>>
springboot架构下运用shiro后在configuration,通过@Value获取不到值,总是为null
查看>>
SQLServer 数据库镜像+复制切换方案
查看>>
Postman初探
查看>>
仿淘宝头像上传功能(一)——前端篇。
查看>>
Eclipse通过集成svn实现版本控制
查看>>
OS开发过程中常用开源库
查看>>
关于在多个UItextield切换焦点
查看>>
STL: HDU1004Let the Balloon Rise
查看>>
hdu 2768
查看>>
git记住用户名密码
查看>>
ElasticSearch(2)-安装ElasticSearch
查看>>
从mysql数据表中随机取出一条记录
查看>>
ORACLE 锁表处理,解锁释放session
查看>>
二.hadoop环境搭建
查看>>
深海机器人问题
查看>>
ios开发之 -- invalid nib registered for identifier
查看>>
MySQL 通过semi join 优化子查询
查看>>